
© 1999 Macmillan Magazines Ltd
NATURE | VOL 402 | 16 DECEMBER 1999 | www.nature.com 785

letters to nature

.................................................................
Thermally activated transitions
in a bistable three-dimensional
optical trap
Lowell I. McCann², Mark Dykman & Brage Golding

Department of Physics and Astronomy, Michigan State University, East Lansing,

Michigan 48824-1116, USA

..............................................................................................................................................

Activated escape from a metastable state underlies many physical,
chemical and biological processes: examples include diffusion in
solids, switching in superconducting junctions1,2, chemical
reactions3,4 and protein folding5,6. Kramers presented the ®rst
quantitative calculation7 of thermally driven transition rates in
1940. Despite widespread acceptance of Kramers' theory8, there
have been few opportunities to test it quantitatively as a compre-
hensive knowledge of the system dynamics is required. A trapped
brownian particle (relevant to our understanding of the kinetics,
transport and mechanics of biological matter9,10) represents an
ideal test system. Here we report a detailed experimental analysis
of the brownian dynamics of a sub-micrometre sized dielectric
particle con®ned in a double-well optical trap. We show how these
dynamics can be used to directly measure the full three-dimensional
con®ning potentialÐa technique that can also be applied to other
optically trapped objects11,12. Excellent agreement is obtained
between the predictions of Kramers' theory and the measured
transition rates, with no adjustable or free parameters over a
substantial range of barrier heights.

A mesoscopic particle, suspended in a liquid and con®ned within
a metastable potential well provides an ideal representation of
Kramers' ideas. The particle moves at random within the well
until a large ¯uctuation propels it out of the well over an energy
barrier. The potential can be created with a gradient optical trapÐa
technique widely used in biophysical studies9. Dual optical traps
were introduced initially to study the synchronization of the
interwell transitions by periodic forcing13. A particle in a dual
optical trap is a well-controlled model system which can be used
to address quantitatively the problem of transition rates provided
the con®ning potential can be accurately determined.

The optically induced potential wells constructed in the present
experiments are formed by focusing two parallel laser beams
through a single objective lens. Each beam creates a stable three-
dimensional trap as a result of electric ®eld gradient forces exerted
on a transparent dielectric spherical silica particle of diameter 2R =
0.6 mm (Bangs Laboratories). Displaced by 0.25 to 0.45 mm, the
beams create a double-well potential, with the stable positions of the
particle centre at r1 and r2. Relatively infrequent random transitions
between the potential wells occur through a saddle point at rs as
depicted in Fig. 1a. Both the depth of each potential well and the
height of the intervening barrier are under experimental control.

The two HeNe lasers (17 mW, 633 nm) that create the traps are
stabilized by Pockels cell electro-optic modulators and imaged into
a sample cell by a 100x 1.4 NA PlanApo objective lens mounted in an
Olympus IX-70 microscope. The beams are mutually incoherent
and circularly polarized as they enter the microscope. A single
trapped sphere is imaged onto a Dalsa CA-D1 CCD camera
operated at 200 frames per second. The coordinates of the sphere's
centre in the focal plane of the objective lens are found to within
610 nm with a pattern-matching routine, and the coordinate in the
beams' propagation direction is extracted by analysis of the image
size as it moves above and below the focal plane. The sealed sample

cell, constructed from two glass coverslips and epoxy resin, holds a
dilute suspension of silica spheres in water at room temperature.
The experimental output of this system is a time record of the
coordinates r(t); as shown in Fig. 1b.

As a result of the short equilibration time of the sphere in water
(g -1 = M/(6phR) , 10 -7 s, where h is the viscosity of water and M is
the particle mass), the brownian particle relaxes to equilibrium on a
timescale much shorter than the sampling time. The spatial prob-
ability density is therefore:

r�r� � Zÿ1exp�2 U�r�=kBT� �1�

Here U(r) is the potential energy as a function of particle
position, and Z is a normalization constant. The probability density
is found from the time series r(t), typically using 106 to 107 frames,
for durations much longer than the mean interwell transition times.
Equation (1) then allows us to obtain the potential directly from
measurements.

Figure 2 shows U(r) for a two-beam trap. We choose the x axis to
be in the direction from one beam to the other and the z axis along
the propagation direction of the beams. The potential minima, r1

and r2, lie in the symmetry plane y = 0 formed by the beam axes.
Figure 2a shows a two-dimensional cross-section, at y=0, of the
potential with energy contours at 1.0 kBT intervals distinguished by
colour-coding, where kB is the Boltzmann constant and T is
temperature. If, for a given x, we ®nd the minimum of U(r) over
y and z, we obtain the familiar one-dimensional representation of a
double-well potential shown in Fig. 2b. Figure 2c shows the energy
contours at r2 for a cross-section in the y±z plane with the
corresponding energy pro®le in Fig. 2d. The elongated pro®le
along z is expected, since the radial ®eld gradient is determined
by the transverse beam pro®le whereas the weaker axial gradient
depends on the angular divergence of the focused beam near its
diffraction-limited waist14.
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Figure 1 Interwell transitions in a dual optical trap. a, Two neighbouring focused beams in

the absence of a perturbing trapped sphere are shown. The dark line illustrates the path of

a trapped sphere in an interwell transition between r1 and r2 through the saddle at rs. The

equilibrium positions r1 and r2, at the level of the rings around the beams, are displaced

above the focal plane of the incident beams. b, Projection of particle trajectory on the x-

axis perpendicular to the beams, where x1, x2 are components of r1, r2. The sampling

interval is 5 ms and the total time duration of the record is approximately 8 s. During the

acquisition time, a computer performs a pattern-matching routine that returns the three

particle coordinates. The particle spends most of its time in the vicinity of the stable points

r1 and r2 with infrequent transitions between them.
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The double-well potential in Fig. 2 has minima r1,2 separated by
dx = 0.35 mm, a single intervening saddle point at rs, and U(r2) ±
U(r1) = 0.8 kBT. We emphasize that the potential measured in this
manner is the overall effective potential experienced by the particle
in its environment.

A feature of the effective potential evident in Fig. 2a is the strong
symmetry breaking about the focal plane, which is the symmetry
plane of the beams, unperturbed by the particle. This symmetry
breaking leads to the single saddle point in U(r) instead of two
saddle points as might be inferred from Fig. 1a. This aspect of the
potential is not an artefact of speci®c experimental conditions, such
as non-parallel optical beams, but is a consequence of the beam±
particle interaction. The dielectric particle acts as a spherical lens to
refocus the beam inside the sphere. When the particle is displaced in
the +z direction above the focal plane, the electromagnetic ®eld is
most strongly `squeezed' into the particle, thus minimizing the total
free energy of the polarized particle in the ®eld.

In the vicinity of r1, r2, and rs, the potential U(r) is quadratic in
the displacements dr = r - ri with i=1,2, or s:

U�r� � U�ri� �
1

2
M

â;b

Lab
i dradrb �2�

Here a, b = x, y, z. In practice, we perform a least-squares ®t of
equation (2) to the data in the vicinity of ri. As an example of the
results and errors in this procedure, Table 1 shows the eigenvalues q2

i

of the matrix Li for the potential shown in Fig. 2. The characteristic
frequencies |qi| are small compared to the damping rate g so the
particle is overdamped.

We now consider the interwell dynamics of the particle. Speci®-
cally, we examine the rates W12 (W21) of transitions 1 ! 2 (2 ! 1),
and their dependence on the energy barriers DU1 = U(rs) ± U(r1)
and DU2 = U(rs) ± U(r2). We tune DUi=kBT up to 8.5 by adjusting
the optical intensity in each beam and the beam separation. The
presence of the energy asymmetry DU12 = U(r2) ±U(r1) between
0.5±3 kBT allows us to measure two independent rates with a single
optical con®guration. For each set of experimental conditions, we
determine the full three-dimensional potential, similar to Fig. 2. To
obtain satisfactory statistics, we accumulated between 2,400 and
94,000 interwell transitions that occurred over 5 ´ 105 to 107 frames.

A quantitative description of thermally activated escape from a
one-dimensional metastable potential was given by Kramers7 and
subsequently extended to multidimensional potentials15. The subject
has been extensively reviewed8,16,17. For an overdamped brownian
particle in a potential U(r), the Kramers transition rate is:

WK
� WK

0 exp 2
DU

kBT
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Figure 2 Experimentally determined potential energy of the particle in a double-well

optical trap. a, Energy contours for a cross-section in the x±z plane that contains the

stable points r1 and r2, and the saddle point rs. Each colour indicates a 1.0 kBT energy

interval. b, The energy, minimized with respect to y and z, as a function of x as shown in a.

DU1 and DU2 are the barrier heights for the corresponding wells. c, The energy contours

in a y±z cross-section containing point r2. d, The energy, minimized with respect to x and

z, as a function of y as shown in c. The potential described in the ®gure was extracted from

a data set of 4 x 106 camera frames containing 94,000 interwell transitions.
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Figure 3 Experimental and theoretical transition rates. We compare the directly measured

transition rates, Wmeas , with the rates calculated from the three-dimensional Kramers

theory, WK, using the measured curvatures of the potential wells. The squares represent

escapes from the well at r1 and the triangles represent escapes from the well at r2. The

line of slope unity indicates the result expected if the data coincide with the Kramers

theory.

Table 1 Features of the optical potential in Fig. 2 and associated transition rates

|q(1)| q(2) q(3) ¢U=kBT WK
0 WK Wmeas

...................................................................................................................................................................................................................................................................................................................................................................

Well at r1 16 6 4 55 6 14 6 6 3 2:77 6 0:05 80 6 40 5 6 2 6:57 6 0:03
Saddle at rs 7 6 2 50 6 25 6 6 3
Well at r2 21 6 5 56 6 14 6 6 3 3:51 6 0:04 110 6 50 3 6 2 3:70 6 0:02
...................................................................................................................................................................................................................................................................................................................................................................

Characteristic frequencies q(j)
i (in 104 s-1, with j � 1; 2; 3) associated with the extrema, ri, of the potential in Fig. 2. Note that q�1�

s
2 , 0. WK

0 is the Kramers prefactor, WK is the Kramers rate, and Wmeas is the
experimentally determined rate in transitions per second, reported for the two potential wells at r1 and r2. DU/kBT is the reduced barrier height. The errors reported for q(3) do not include the uncertainty in the
z-position calibration since it does not in¯uence the value of WK

0.
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Here the prefactor is given by the following expression for a three-
dimensional potential15:

WK
0 �

jq�1�
s jq�1�

2pg

q�2�q�3�

q�2�
s q�3�

s

�4�

Here q(j)
s and q(j)characterize, respectively, the curvatures of the

potential at the saddle point and at the minimum from which
the system escapes, with (q(1)

s )
2

, 0. Therefore, with knowledge of
the potential, not only the exponential term, but also the prefactor
can be explicitly computed, as shown in Table 1.

Figure 3 shows a plot of the Kramers rates, W K, calculated from
equations (3) and (4) as a function of the transition rates, W meas,
obtained from the mean dwell time in each state or by ®tting an
exponential to a histogram of dwell times, in accordance with a
Poisson distribution, which yielded equivalent results. The systema-
tic variation of the potential barrier DU by approximately 6 kBT is
responsible for the nearly three-decade variation in transition rates.
The solid line with unity slope denotes the coincidence of theory
and experiment. The data fall remarkably close to the line, con-
®rming the multidimensional Kramers theory of transition rates.

One of the major contributors to the uncertainty in calculating
W Kis the error in the saddle point frequencies entering equation
(4). This is primarily statistical, since the particle spends little time
in the vicinity of rs. This error is ampli®ed for the highest barriers
with the lowest transition rates. At low barriers, the statistical
uncertainty is small since the transition rates are large, but the
Kramers theory is not strictly valid here. If the thermal diffusion
length exceeds the size of the parabolic region in the vicinities of the
stationary states, then the transition rates are affected by the shape
of the potential away from the stationary states. However, the
corrections to the theory are small in the range of parameters
studied here.

Detailed knowledge of the overall potential, as afforded by our
experiments, should enable investigations of the escape rate of
underdamped particles in the region in which escape occurs by
diffusion over energy, as well as the Kramers turnover region8,18.
This can be accomplished with present methods by reducing the
viscous damping on the particle. Knowledge of the potential is also
crucial for understanding strategies for control of escape. Escape
occurs by large ¯uctuations19 that move the system from a mini-
mum of the potential to the barrier top along optimal paths. The
results of this work make it possible to ®nd these paths, enabling
selective control of escape rates by external modulating ®elds20.
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The ®eld of magnetoelectronics has been growing in practical
importance in recent years1. For example, devices that harness
electronic spinÐsuch as giant-magnetoresistive sensors and
magnetoresistive memory cellsÐare now appearing on the
market2. In contrast, magnetoelectronic devices based on spin-
polarized transport in semiconductors are at a much earlier stage
of development, largely because of the lack of an ef®cient means of
injecting spin-polarized charge. Much work has focused on the use
of ferromagnetic metallic contacts3,4, but it has proved exceedingly
dif®cult to demonstrate polarized spin injection. More recently,
two groups5,6 have reported successful spin injection from an NiFe
contact, but the observed effects of the spin-polarized transport
were quite small (resistance changes of less than 1%). Here we
describe a different approach, in which the magnetic semi-
conductor BexMnyZn1-x-ySe is used as a spin aligner. We achieve
injection ef®ciencies of 90% spin-polarized current into a non-
magnetic semiconductor device. The device used in this case is a
GaAs/AlGaAs light-emitting diode, and spin polarization is con-
®rmed by the circular polarization state of the emitted light.

The quaternary II±VI magnetic semiconductor BexMnyZn1-x-ySe
has particular properties that make it ideally suitable as a spin-
aligner for injecting electrons into GaAs. If its lattice parameter is
kept constant and matched to the lattice constant of the GaAs
substrate, then the Mn concentration can be varied over a wide
range. The magnetic Mn ions are incorporated isoelectronically, and
the conductivity type can be controlled by external dopants. This is
in contrast to, for example, the III±V counterpart GaxMn1-xAs,
where the incorporation of Mn inherently leads to a high p-type
doping7 . Here we used n-type BexMnyZn1-x-ySe as the spin-
aligning material. Spin-injection of electrons rather than holes is
advantageous because of the reduced spin±orbit coupling in the
conduction band, decreasing spin decoherence. From the electrical
point of view, BexMnyZn1-x-ySe is also ideally suited as a spin-aligner
on a GaAs-based heterostructure, as it allows for high quality




